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Abstract

A unitary operatorU = ∑ j ,k u j ,k|k〉〈 j| is calleddiagonalwhen
u j ,k = 0 unlessj = k. The definition extends to quantum compu-
tations, wherej andk vary over the 2n binary expressions for in-
tegers 0,1· · · ,2n−1, givenn qubits. Such operators do not affect
outcomes of the projective measurement{〈 j| ; 0 ≤ j ≤ 2n−1}
but rather create arbitrary relative phases among the computa-
tional basis states{| j〉 ; 0≤ j ≤ 2n−1}. These relative phases
are often required in applications.

Constructing quantum circuits for diagonal computations us-
ing standard techniques requires eitherO(n22n) controlled-not
gates and one-qubit Bloch sphere rotations or elseO(n2n) such
gates and a work qubit. This work provides a recursive, construc-
tive procedure which inputs the matrix coefficients ofU and out-
puts such a diagram containing 2n+1−3 alternating controlled-
not gates and one-qubitz-axis Bloch sphere rotations. Up to a
factor of two, these circuits are the smallest possible. Moreover,
should the computationU be a tensor of diagonal one-qubit com-
putations of the formRz(α) = e−iα/2|0〉〈0|+ eiα/2|1〉〈1|, then a
cancellation of controlled-not gates reduces our circuit to that of
ann-qubit tensor.

1 Introduction

LetU(N) = {V anN×N matrix ; VV∗ = 1}, where1 is an iden-
tity matrix andV∗ = V̄t is the mathematical notation for the
adjoint. One may viewU(N) as the set of all reversible quan-
tum computations acting onn qubits. Then our usual conven-
tion is that algorithms forquantum circuit synthesisinput such
a V ∈ U(N) and output a quantum circuit diagram forV, up to
global phase. Several distinct quantum circuits may realize the
same computationV. Thus, one seeks circuits for which the total
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number of gates is small. This work focuses on the case where
the input computation is diagonal.

Gate counts for quantum circuits are often made in terms of
basic gates[1], i.e., the set of all controlled-not gates and one-
qubit computations. Our gate counts will be made with respect
to the following gate library. We refer to elements aselementary
gates, in contrast to basic gates.

1. For 1≤ j ≤ n, applyRy(θ) ∈U(21) on line j, where

Ry(θ) = cosθ
2 |0〉〈0| +sinθ

2 |0〉〈1|
−sin θ

2 |1〉〈0|+cosθ
2 |1〉〈1|, 0≤ θ < 2π

(1)
is ay-axis Bloch sphere rotation [12, §4.2].

2. For 1≤ j ≤ n, applyRz(α) ∈U(21) on line j, where

Rz(α) = e−iα/2 |0〉〈0|+eiα/2|1〉〈1|, 0≤ θ < 2π (2)

is az-axis Bloch sphere rotation [12, §4.2].

3. Let 1≤ j,k ≤ n, let b1,b2, · · · ,bn ben variables varying in
the field of two elementsF2, and letx,y 7→ x⊕y denote the
exclusive-or (XOR) operator which is addition inF2. The fi-
nal type of elementary gate is thej-controlled-not gate act-
ing on linek. We denote it byCk

j . In casej < k,

Ck
j = ∑

0≤b1···bn≤N−1

|b1 · · ·b j · · ·(b j ⊕bk) · · ·bn〉〈b1 · · ·b j · · ·bk · · ·bn|

(3)
The other casek < j is similar.

The elementary gate library is universal because anyV ∈ U(N)
factors into basic gates [1] and any one-qubit computationW can
be decomposed intoW = eiΦRy(θ1)Rz(α)Ry(θ2) for eiΦ an un-
measurable global phase [1, Lemma4.1] [12, §4.2]. Moreover,
the asymptoticsΩ(−), O(−), andΘ(−) of the counts in either
gate library are identical, since every elementary gate is basic
while every basic gate factors into at most three elementarygates.

We next set some conventions. Throughout,U is a diagonal
quantum computation onn qubits. Thus, forN = 2n, U acts on
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then-qubit state space which is theC span of the computational
basis{| j〉 ; 0≤ j ≤ N−1}. The j are typically written as binary
integers. AsU is diagonal,U = ∑N−1

j=0 u j | j〉〈 j|. Moreover,U

unitary implies|u j |
2 = 1.

We denote the Lie group [9] of all diagonal computations on
n-qubit states byA. The notationA(n) may be used for emphasis.
Observe thatA is abelian, i.e., commutative.

Circuit synthesis algorithms that provably produce minimal
gate counts are rare, difficult to construct, and have been pub-
lished for special cases only [14]. Before stating our main result,
we formalize a sense in which it is best possible.

Definition 1.1 Let H ⊂ U(N) be an analytic subgroup. Ann-
qubit quantum circuit synthesis algorithm with inputs restricted
to H is said to stably output toH iff i) it outputs at most a
countably infinite number of quantum circuit topologies con-
taining only elementary gates as inputs are varied over all of H
and ii) for each such circuit topologyτ, the corresponding com-
putations remain inH for every variation of parameter on any
Ry(θ), Rz(α) gate withinτ. If ς is such a synthesis algorithm
accepting any input fromH and outputting stably toH, we put
#ς = max{#τ ; τ is a diagram output byς}, where #τ refers to the
number of elementary gates inτ. We finally put

ℓ(H) = min{#ς ; ς outputs stably toH} (4)

Definition 1.2 Consider now a family{H(n)⊂U(2n) ; n≥ 1}
of analytic subgroups [9, p. 47]. A family ofn-qubit synthesis al-
gorithms{ς(n) ; n≥ 1}, each allowing for any input inH(n) and
outputting stably toH(n), will be calledstably asymptotically
optimal iff #ς(n) ∈ O(ℓ[H(n)]).

Theorem 1.3 Any n-qubit diagonal computation U∈ A(n) may
be realized by a quantum circuit holding2n+1 − 3 alternating
controlled-not gates and z-axis Bloch sphere rotations Rz(θ). The
construction is stably asymptotically optimal for A(n).

Remark 1.4 Two other comments should be made about the
construction. First, it requires neither a work qubit [1] nor any
Ry(θ) elementary gates. Second, should an-qubit tensor of the
form ⊗n

j=1Rz(α j) be input to the algorithm, the output will hold
several cancelling controlled-not gates. After cancellation, the
output will match the input. 3

As a benchmark, we describe in Section2 a diagram for a
given diagonalU using standard techniques. The technique
hinges on a well-known circuit diagram for an(n−1)-qubit con-
trolled element ofA(1). In the presence of one ancilla (work)
qubit, this diagram holdsO(n2n) basic or equivalently elemen-
tary gates. The cost rises toO(n22n) when there is no ancilla
qubit. Thus, the asymptotic cost ofO(2n) of the synthesis algo-
rithm of the Theorem (see Section4) compares favorably with
known results. Moreover, dimension counts during the argument

for stably asymptotically optimal will make clear that synthesiz-
ing large subsets ofA requires≥ 2n − 1 elementary gates. In
this specialized sense,Ω(2n) gates are required, and the diagram
of Section4 proves that diagrams for generic diagonal computa-
tions costΘ(2n) elementary (or basic) gates.

See Figure1 for the overall circuit topology in the casen = 3
qubits. We defer a description of the algorithm for computing the
Rz angles to the body and next discuss potential applications.

The first application is in conjunction with the standard syn-
thesis algorithm [1, 3] [12, §4.5], which may be formalized using
the QR matrix decomposition [4, 3]. For V ∈ U(N), the algo-
rithm uses a matrix factorizationV = QR, whereQ is a product
of Givens rotations [3] realizable as(n−1)-controlled one-qubit
computations andR is diagonal. Should the projective measure-
ment{〈 j| ; 0≤ j ≤ N−1} follow V, one need not applyR.

Consider instead the following situation. Forp << n,
a desired computationV ∈ U(N) is known to arise from
V1,V2, · · · ,Vn−p+1∈U(2p) as follows. FirstV1 is applied on lines
1,2, · · · , p, after whichV2 is applied on lines 2,3, · · · , p+1, and
so on until finallyVn−p+1 is applied on linesn− p+ 1,n− p+
2, · · ·n. If quantum computing technology has progressed so that
O(np2p) elementary gates may be realized directly, one may fac-
tor eachV1 = Q1R1, V2 = Q2R2, . . .Vn−p+1 = Qn−p+1Rn−p+1 and
apply the standard synthesis algorithm on each subblock. How-
ever, with the convention that{〈 j| ; 0≤ j ≤ N−1} is only ap-
plied after the entire computationV, we now need quantum cir-
cuits realizing each of theR1,R2, · · · ,Rn−p+1. The synthesis al-
gorithms proposed in this paper provide these. Moreover, note
that essential part of the argument is merely the overlap of the
smaller blocks, not their pattern.

Two further instances commonly arise where one needs to be
careful about relative phases of computational basis states.

• Suppose that forV ∈U(2n−1), one wishes to build a circuit
for the computation(1⊕V)∈U(2n) which appliesV iff the
top line carries|1〉. Suppose one has a circuit forV, correct
up to relative phase. For example, such results from the fac-
torization ofQ into Givens rotations usingV = QR [3]. A
straightforward approach is to condition every gate inQ, so
that e.g. conditioned-not gates inQ correspond to Toffoli
computations in1⊕Q. Yet 1⊕R will affect measurements
in then-qubit computational basis, unlike the diagonal com-
putationR in (n−1) qubits. One even needs a conditioned
gate for theglobalphase of the originalV.

• Moreover, circuits for diagonal computations are required
whenever the final projective measurement [12, §2.2.5] is
not{〈 j| ; 0≤ j ≤ N−1}.

Another possible application of circuits for diagonal quan-
tum computations is to reduce the synthesis of arbitrary quan-
tum computations to the synthesis of real quantum computa-
tions [13], i.e., of thoseV ∈ O(N) = {V ∈U(N) ; V = V̄}. For
there is a matrix decompositionU(N) = O(N) A O(N). Indeed,
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Figure 1: This diagram shows the circuit structure realizing a three qubit diagonal computation using our circuit synthesis algorithm.
The general algorithm applies inn rather than merely three qubits and extends the construction of Section 2.2 of a previous work
[2]. Should the input diagonal be of the formU = Rz(α1)⊗Rz(α2)⊗Rz(α3), the second, third, fourth, and sixthRz gates of the
output diagram are trivial, implying that all controlled-not gates cancel. The output then coincides with the input.

this is a special case of theKAK metadecomposition [9, 8, 2].
Thus if V ∈ U(N) is arbitrary, we may writeV = O1UO2 for
O1,O2 ∈ O(N) real quantum computations andU ∈ A(n). The
present work produces a circuit forU ∈ A(n), reducing the ques-
tion of a circuit forV ∈U(N) to circuits forO1,O2 ∈ O(N).

Finally, we expect further applications to other quantum cir-
cuit synthesis algorithms relying on other examples of the
KAK matrix metadecomposition. Another such example is the
Cosine-Sine decomposition[17]. This decomposition states
that one may write anyV ∈U(N) asV = (U1⊕U2)W(U3⊕U4)
forU1,U2,U3,U4 ∈U(N/2) andW a sparse matix whose nonzero
entries are paired cosines and sines. A quantum circuit for the
matrix W may be synthesized using the algorithm of this pa-
per. Indeed, letS= |0〉〈0|+ i|1〉〈1| andH denote the Hadamard
gate, costing one and two elementary gates respectively [2].
Then for 1 an (N/2)× (N/2) identity matrix, one may com-
pute thatU = [SH⊗ 1]W[(SH)∗⊗1] ∈ A is a diagonal compu-
tation. Hence, one may implement the nonrecursive portion of
Cosine-Sine synthesis using the methods of this paper and
six extra elementary gates.

We briefly outline the body of the paper. Section2 describes
an algorithm for building quantum circuits for diagonal compu-
tations which is analogous to an unoptimized version of classi-
cal two-level synthesis of logic functions. This algorithmpro-
ducesO(n2n) gates with a single ancilla qubit andO(n22n) gates
else. Section3 outlines how to use Lie theory [9] to recog-
nize whenUn ∈ A(n) factors as a tensor on linen, i.e., case
Un = Un−1 ⊗Rz(α) for Un−1 ∈ A(n− 1). Section4 motivates
and describes the recursive construction of the circuits ofTheo-
rem1.3. Finally, Section5 discusses dimension counts required
for the lower bounds proving that our circuit diagrams are gener-
ically asymptotically optimal. AppendixA gives a construction
similar to that of the Theorem, using(n−1)-controlledRz gates.

Finally, some mathematical background beyond that usually
associated to the quantum computing literature [12] is required
to understand the arguments in this manuscript. The constructive
synthesis algorithm makes use of the Lie theory of commutative
matrix groups [9]. The argument for stable lower bounds makes
use of the theory of smooth manifolds as is commonly treated in
differential topology [5].

2 Prior Work

Circuits with measurement gates of Hogg et al.

Hogg et al. [7] consider synthesis of quantum circuits for diago-
nal computations from a much different perspective. Their main
result is polynomial-size circuits, but in somewhat different cir-
cumstances compared to our work.

• The diagonal computationsU = ∑N−1
j=0 u j | j〉〈 j| to which the

prior result applies are required to have manyu j repeat. In-
deed, accounting for the global phase, one supposes a fam-
ily of diagonal computations{Un = ∑N−1

j=0 un, j | j〉〈 j| ; n≥ 1}
where #{un, j 6= 1 ; 0≤ j ≤ 2n−1} scales as some polyno-
mial p(n).

• Moreover, the algorithm chosen in later steps depends on
outputs of measurements of the quantum memory state in
earlier steps. In the construction of classical circuits, the
gate count would be increased by at least oneMUX (if-then-
else) gate for each classical branching, and each uniqueu j

contributes such a branching. The presense of measurement
gates moreover takes their algorithm out of the present con-
text of reversible gate libraries.

• The circuits ibid. would be large on a generic input of
⊗n

j=1Rz(α j) due to little repetition in the input phases.
Thus, a separate section [7, §4] describes a precomputation
to determine whether an input is of the form⊗n

j=1Rz(α j ).
If this is the case, one should instead choose the tensor
diagram. In contrast, given an inputU = ⊗n

j=1Rz(α j ),
our output circuits automatically contain several cancelling
controlled-nots’s. After cancellation, one recovers the input
tensor.

Despite these caveats, the citation above does include someof
the discussion of the next subsection.
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Figure 2: ForS= {1,2} ⊂ {1,2,3}, this figure shows at left
[XδS⊗1] ◦Λ{1,2,3}(V) ◦ [XδS⊗1]. At right is the first reduction
of this circuit in a common implementation [1].

Analogies to classical two-level logic

We briefly recall classical two-level synthesis in order to contrast
our circuits with this technique. Thus, letF2 denote the field of
two elements, andb ∈ F2 also denote either a Boolean value or
an integer of{0,1}. In this section, let̄b= b1b2 · · ·bn ∈ (F2)

n de-
note ann-bit string. Supposeϕ : (F2)

n → F2 describes ann-to-1
Boolean function we wish to realize with a circuit in the classical,
irreversibleAND-OR-NOT gate library. A textbook technique [6]
is the two-level approach. Briefly, takeb1,b2, · · ·bn as variables,
and letc̄ = c1c2 · · ·cn ∈ (F2)

n be a fixed bit string withϕ(c̄) = 1.
Denote byδc̄ the indicator function of ¯c, i.e.,δc̄ : (F2)

n → F2 has
δc̄(c̄) = 1 andδc̄(b̄) = 0 for b̄ 6= c̄. Then we have

δc̄ = [NOTc1⊕1(b1)]AND[NOT
c2⊕1(b2)]AND · · · [NOT

cn⊕1(bn)], (5)

where theAND gates are equivalently multiplication inF2. More-
over, if {c̄1, c̄2, · · · , c̄ℓ} = {b̄ ∈ (F2)

n ; ϕ(b̄) = 1}, then the ex-
pression

ϕ = δc̄1 OR δc̄2 OR · · ·OR δc̄ℓ
(6)

provides anAND−OR−NOT circuit. For genericϕ with ℓ ≈ 2n−1,
note this classical two-level circuit requiresO(2n−1) gates.

Optimizing such two-level circuits isNP-hard [6], and the
problem has been studied extensively since the late 1960s. Al-
gorithms and tools for this problem, e.g.Espresso, are widely
known, and some are used in commercial circuit design tools.
More recently, two-level decompositions in theAND-XOR-NOT
gate library have been introduced. This is still universal,as
any b1,b2 ∈ F2 have (b1 OR b2) = b1 ⊕ b2 ⊕ (b1 AND b2).
Publicly available tools for such ESOP-decomposition include
EXORCISM-4 [11, 15]. We mention this transitionOR 7→ XOR

as it is loosely analogous to our change in strategy from Section
A to Section4. Other work onROM-based quantum computation
[16] has also made use ofXOR based two-level synthesis.

We extend these ideas to build a simple circuit forU =

∑N−1
j=0 u j | j〉〈 j| costingO(n2n) elementary (or basic) gates. Recall

standard notation usesΛk(V) to denote ak−controlledV gate for
V ∈ U(21) [1]. We extend this notation slightly, in view of this
section and AppendixA.

Definition 2.1 In n-qubits, letS⊂ {1,2, · · ·n− 1} andV ∈
U(21). ThenΛS(V) denotes the particular instance ofΛ#S(V)
controlled by lines{ j ∈ S} and acting on linen.

Definition 2.2 In n qubits, letS⊂ {1,2, · · ·n−1}. ThenδS :
(F2)

n → F2 is given byδS( j) = 1 iff [( j 6= n) and( j ∈ S)]. For
X = |1〉〈0|+ |0〉〈1| a Pauli-X gate, we writeXδS = ⊗n

j=1XδS( j).
If 0 ≤ j ≤ N/2−1, thenS( j) ⊂ {1,2, · · ·n−1} is the subset

S( j) = {0≤ k≤ N/2−1 ; ck = 1 for j = c̄ = c1c2 · · ·cn−1}

Finally, for S⊂ {1,2, · · ·n−1}, the numberk(S) is that integerk
such thatS= S(k).

We now detail one construction of a circuit forU =

∑N−1
j=0 u j | j〉〈 j|. Let 0≤ k ≤ N− 1, andk ≡ 0mod 2. LetVk =

uk|0〉〈0|+uk+1|1〉〈1|, a one-qubit computation. Label

Uk = uk|k〉〈k|+uk+1|k+1〉〈k+1|+ ∑
j 6=k, j 6=k+1

| j〉〈 j| (7)

Then we have the following expression.

Uk = [XδS(k/2) ⊗1] Λ{1,2,··· ,n−1}(Vk) [XδS(k/2) ⊗1] (8)

Moreover, all suchUk commute. Thus for any enumeration of
subsetsS1, · · · ,SN/2 ⊂ {1,2, · · ·n−1},

U = [XδS1 ⊗1] Λ{1,2,··· ,n−1}(Vk(S1)) [XδS1 ⊗1]◦

[XδS2 ⊗1] Λ{1,2,··· ,n−1}(Vk(S2)) [XδS2 ⊗1]◦ · · ·◦

[X
δSN/2 ⊗1] Λ{1,2,··· ,n−1}(Vk(SN/2)

) [X
δSN/2 ⊗1]

(9)

This directly produces a quantum circuit built out of subblocks
such as the one illustrated in Figure2.

Before passing to the asympotitcs, we note an optimization.
A Grey code[12, §4.5.2] produces a sequenceS1,S2,S3 · · ·SN/2
with #(Sk∩Sk+1) = 1,1≤ k≤ N/2−1. Sample Grey codes are
recalled withn−1= 1,2,3, where we writek(S) for each subset:

0,1
00,01,10,11
000,001,010,011,111,110,101,100

(10)

By using a Grey code in the choice of enumeration of the sub-
set for equation9, we obtain a massive cancellation of inverters
leaving onlyN/2 suchX gates.

Figure2 recalls the remaining facts justifying theO(n2n) gate
count for this synthesis algorithm. Namely, each of theN/2 com-
putationsΛn−1(V) requireO(n2) basic gates absent an ancilla
qubit or 48n−164 basic gates with an ancilla qubit present [1].
Summing produces asymptotics ofO(n2n) elementary or basic
gates with the ancilla present andO(n22n) gates without the an-
cilla present. In contrast, the circuits of Theorem1.3 described
in Section4 require no ancilla and costO(2n) gates.
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3 Tensors and characters

The recursive proccess of the two new synthesis algorithms for
diagonal quantum computations in Section4 and AppendixA
both rely on well-known ideas from Lie theory [9]. Specifically,
it is typical to study Lie groups and most especially commutative
Lie groups using their character functions. ForG a Lie group, a
character is a functionχ : G→ C−{0} with χ(gh) = χ(g)χ(h).
The motivating example is the following group and character.

G = GL(n,C) = {M n×n complex matrix ;∃ M−1}
χ = det :GL(n,C) → C−{0}

Note that for any character, logχ(gh) = logχ(g) + logχ(h) and
by continuity logχ(ga) = alogχ(g) for g,h∈ G,a∈ R. This will
be useful in the sequel.

We seek an obstructionη to writing Un ∈ A(n) as Un−1 ⊗
Rz(α), written in terms of characters. First, let us classify which
diagonalUn may be written in this way.

Proposition 3.1 (cf. [2, §2.2]) Let U = ∑N−1
j=0 u j | j〉〈 j|. Then

there exists V= ∑N/2−1
j=0 v j | j〉〈 j| in A(n−1) and W= w0|0〉〈0|+

w1|1〉〈1| a one-qubit diagonal so that U= V ⊗W if and only if

u0u−1
1 = u2u−1

3 = u4u−1
5 = · · · = uN−2u−1

N−1 (11)

Proof: The check that such a tensor satisfies the chain of
equalities is routine. For the opposite implication, letU =

∑N−1
j=0 u j | j〉〈 j|. Then define theW = u0|0〉〈0|+ u1|1〉〈1|. Now

U being unitary demandsu0 6= 0. Thus, choose in the expression
for V thatv0 = 1,v1 = u2/u0,v2 = u4/u0, · · · ,vN/2−1 = uN−2/u0.
The chain equality then impliesU = V ⊗W. 2

We now introduce the language for our obstructionη. Note
that corollary3.3 motivates these technical terms and is crucial
to the constructions of Section4 and AppendixA.

Definition 3.2 Let U = ∑N−1
j=0 u j | j〉〈 j| define coordinates on

A(n). For 1≤ j ≤ N/2− 1, we define character functions
χ j : A(n) → C−{0} by χ j(U) = u2 j−2u−1

2 j−1u
−1
2 j u2 j+1. ForU ∈

A(n), we define the vector valued functionη : A(n) → RN/2−1

by η(U) = −i [logχ1(U) log χ2(U) · · · logχN/2−1(U)]t . Here,
the superscript denotes the transpose of the typeset row vector,
so that we follow that the usual convention of linear algebrathat
vector-valued functions output column vectors.

Corollary 3.3 The functionη : A(n)→RN/2−1 has the following
properties.

• [U = V ⊗W for V∈ A(n−1),W ∈ A(1)] ⇐⇒ [η(U) =~0]

• For U1,U2 ∈ A(n), we haveη(U1U2) = η(U1)+ η(U2).

• For U ∈ A(n), a∈ R, we haveη(Ua) = a η(U).

Hence, the functionη(−) is a quantitative obstruction to writ-
ing U as a tensor on the last line. A heuristic for the algorithms
of Sections4 andA would then be the following.

1. Define a large enough set of parameter dependent circuit
blocks inA(n) so as to control allN/2−1 degrees of free-
dom of η. Note this number of degrees of freedom coin-
cides with the number of nonempty subsets of the top lines
{1,2, · · · ,n−1}.

2. Use the previous construction and the properties ofη to ap-
pend circuit blocks toU so thatη =~0. Then the composition
Ũ = V ⊗W, with W someRz(α) gate up to global phase.

3. Recurse onV.

In terms of this heuristic, the circuit blocks of SectionA are the
usual conditioned gatesΛk[Rz(α)] [1], while Section4 requires
a variantXOR-controlled rotation. We denote this

⊕

k[Rz(α)],
in analogy to theΛ of Λk[V] being an enlarged version of the
propositional logic symbol∧ for AND.

4 Synthesis using
⊕

k[Rz(α)]

This section describes our main synthesis algorithm. Certain
proofs are omitted due to their similarity to results of Appendix
A. This appendix may be read first independently in order to
motivate the constructions in this section.

Circuit blocks for
⊕

k[Rz(α)]

We begin by making precise the notion of ak-fold XOR-
controlled one-qubit computationV ∈ U(21). Several circuits
blocks holding 2k+ 1 elementary gates are associated with this
for V = Rz(α). Thus we first describe the(k+ 1)-qubit compu-
tation, then highlight a circuit optimized for cancellation in our
application, and finally describe possible variant circuitblocks.

Definition 4.1 Let k ≥ 1, V ∈ U(21) a one-qubit quan-
tum computation, and forb1,b2, · · · ,bk+1 ∈ F2 let the bit-string
b1b2 · · ·bk+1 also denote the element ofZ with this binary repre-
sentation. Then theXOR-controlledV-computation controlled on
lines 1,2, · · · ,k and acting on linek+1 is that

⊕

k(V) ∈U(2k+1)
which extends linearly from

[
⊕

k
(V)]|b1b2 · · ·bk+1〉 =















|b1 · · ·bk〉⊗V|bk+1〉, if
b1⊕b2⊕·· ·⊕bk = 0∈ F2

|b1b2 · · ·bk〉⊗V∗|bk+1〉, if
b1⊕b2⊕·· ·⊕bk = 1∈ F2

(12)
Here,V∗ ∈U(21) is the inverse or adjoint operator toV and the
symbol⊕ denotes the exclusive-OR operation which is also ad-
dition in F2. We take the convention that

⊕

0(V)|b1b2 · · ·bn〉 =
|b1b2 · · ·bn−1〉⊗V|bn〉. In n qubits, shouldS⊂ {1,2, · · · ,n−1}
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be a possibly empty subset, we write
⊕

S(V) for the instance of
⊕

#S(V) conditioned on lines{ j ∈ S} and acting on linen.

In the application, we will use the circuit diagram for
⊕

k[Rz(α)] which follows from the following equation. Let
S⊂ {1,2, · · · ,n− 1}, say nonempty, labelS= {s1,s2, · · · ,sk},
and finally let1∈U(N/2) denote an(n−1)-qubit identity com-
putation. Recalling the controlled-not notationCk

j from the In-
troduction one has
⊕

S
[Rz(α)] = Cn

s1
Cn

s2
· · ·Cn

sk−1
Cn

sk
[1⊗Rz(α)]Cn

sk
Cn

sk−1
· · ·Cn

s2
Cn

s1

(13)
All controlled-not gates to either side of the1⊗Rz(α) term com-
mute. The right hand side of figure3 illustrates the corresponding
circuits. These circuits require 2k+ 1 elementary gates and are
the implementation of

⊕

k[Rz(α)] used in our final circuit dia-
grams. For completeness, we briefly note possible variant circuit
blocks of the same size.

Let S⊂{1, · · · ,n−1} andS 6= /0. SupposeS= {s1, · · ·sk} with
s1 < s2 < · · · < sk. Then another quantum circuit for

⊕

S[Rz(α)]
arises from

⊕

S
[Rz(α)] =

Cs2
s1Cs3

s2 · · ·C
sk
sk−1C

n
sk

[1⊗Rz(α)]

Cn
sk

Csk
sk−1 · · ·C

s3
s2Cs2

s1

(14)

This is illustrated to the left in Figure3.
Finally, although the controlled-not gates in the second dia-

gram corresponding to the alternate Equation certainly donot
commute, one may reorder the circuit in a certain sense. Letσ
be a permutation of{1, · · · ,k}, retainingS= {s1 < s2 < · · ·< sk}.

⊕

S
[Rz(α)] =

C
sσ(2)
sσ(1)

C
sσ(3)
sσ(2)

· · ·C
sσ(k)
sσ(k−1)

Cn
sσ(k) [1⊗Rz(α)]

Cn
sσ(k)

C
sσ(k)
sσ(k−1)

· · ·C
sσ(3)
sσ(2)

C
sσ(2)
sσ(1)

(15)

See the left hand side of Figure3.

Computation of η(
⊕

S[Rz(α)] )

We find it more convenient to use mathematical notation for vec-
tors such as values ofη rather than thebra-ket notation. We
briefly recall the appropriate conventions, treated in moredetail
in AppendixA.

Definition 4.2 For 1≤ j ≤ N/2−1, letej denote is the column

vector inRN/2−1 with a single entry of 1 in thejth row and all
other entries 0. The vectorsv j = ej −ej+1 if 1 ≤ j ≤ N/2−2,
while v0 = −e1 andvN/2−1 = eN/2−1.

The vectors{v j ;1≤ j ≤ N/2−1} form a basis forR2n−1−1.
We need one more definition before computingη( ⊕S[Rz(α)] ).

Definition 4.3 Let S = {s1,s2, · · · ,sk} ⊂ {1,2, · · · ,n− 1}
be nonempty. Inn qubits with N = 2n, let 1≤ j ≤ N/2− 1
with binary representationj = b1b2 · · ·bn−1 for b1,b2, · · · ,bn−1 ∈
F2. Then we say the integerj is XOR-S-conditioned iff
bs1 ⊕bs2 ⊕·· ·⊕bsk = 1. We further define the set

F (S) = {1≤ j ≤ N/2−1 ; j is XOR-S-conditioned} (16)

By a flip stateof S, we mean anyj ∈ F (S), i.e., S-flip is an
abbreviation ofXOR-S-conditioned.

Example 4.4 Consider the special case ofn = 4 qubits. The
flip states of each nonempty subset of{1,2,3} of the top three
lines are given in the table below, in binary.

subset flip states

{1} 100, 101, 110, 111
{1,2} 010, 011, 100, 101
{1,3} 001, 011, 100, 110
{1,2,3} 001, 010, 100, 111
{2} 010, 011, 110, 111
{2,3} 001, 010, 101, 110
{3} 001, 011, 101, 111

Note that for anyS 6= /0, exactly half of the eight integers
0,1, · · · ,7 are elements ofF (S). 3

Proposition 4.5 Let F (S) be the set of flip states of any
nonempty S⊂ {1,2, · · · ,n−1}. Then

η(
⊕

S
[Rz(α)] ) = −2α ∑

j∈F (S)

v j (17)

Also, for S= /0, η[1⊗Rz(α)] =~0.

The proof is similar to that of PropositionA.3. However,
⊕S[Rz(α)] never leaves any computational basis state fixed,
which accounts for the factor of two.

Example 4.6 Considern = 4 qubits for the subsetS= {1,3}
and α arbitrary. For convenience, labelφ = −α/2, so that
Rz(α) = eiφ|0〉〈0|+e−iφ|1〉〈1|. We leave it to the reader to check
thatV =

⊕

S[Rz(α)] is diagonal and merely describe the multi-
ples on each computational basis state.

state mult state mult state mult state mult

|0000〉 eiφ |0100〉 eiφ |1000〉 e−iφ |1100〉 e−iφ

|0001〉 e−iφ |0101〉 e−iφ |1001〉 eiφ |1101〉 eiφ

|0010〉 e−iφ |0110〉 e−iφ |1010〉 eiφ |1110〉 eiφ

|0011〉 eiφ |0111〉 eiφ |1011〉 e−iφ |1111〉 e−iφ

Thus, χ1(V) = e4iφ, χ2(V) = e−4iφ, χ3(V) = e4iφ, χ4(V) = 1,
χ5(V) = e−4iφ, χ6(V) = e4iφ, andχ7(V) = e−4iφ. Thus we have
computedη(

⊕

{1,3}[Rz(α)] ) = 4φi[1 −1 1 0 −1 1 −1]t .
On the other hand, flip states for{1,3} are given in binary by

j = 001,011,100, and 110. SoF (S) = {1,3,4,6} and

(e1−e2)+(e3−e4)+(e4−e5)+(e6−e7)= [1 −1 1 0−1 1−1]t .

This concludes the example. 3
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Figure 3: Shown at center is a symbol due to the authors for denotingXOR control. At right are circuits for
⊕

S[Rz(α)] per Equation
13, as used in the circuits diagonal computations. Here,n = 4 qubits andS= {1,3} ⊂ {1,2,3}, so this is an instance of

⊕

2[Rz(α)].
At left are possible variaint circuits per Equations14and15, whereσ is an identity permutation andσ is the flip permutation of two
elements.

⊕

k[Rz(α)]-block synthesis algorithm

The−0.5 radians in the Definition of the following matrix can-
cels the 2 coefficient in Equation17, so that the resulting matrix
has all entires inZ. It is similar to DefinitionA.5.

Definition 4.7 The matrixη⊕ is the(N/2−1)× (N/2−1) real
matrix defined as follows. Order nonempty subsetsS1, S2, · · · ,
SN/2−1 in Grey order, omitting the empty set. Then for 1≤ j ≤

N/2−1, the jth column ofη⊕ is η(
⊕

Sj
[Rz(−0.5 radians)] ).

Example 4.8 Computing the four-qubit case ofη⊕ is most
quickly accomplished using the table of example4.4and Propo-
sition 4.5. The Grey order of nonempty subsets of{1,2,3} is
{3},{2,3},{2},{1,2},{1,2,3},{1,3}, {1}. Thus the Definition
in this case states

η⊕ =





















1 1 0 0 1 1 0
−1 0 1 1 −1 0 0

1 −1 0 0 1 −1 0
−1 0 −1 0 0 1 1

1 1 0 0 −1 −1 0
−1 0 1 −1 1 0 0

1 −1 0 0 −1 1 0





















(18)

The fifth column recalls example4.6. 3

The matrixη⊕ has the following application. Note the right
hand side is matrix multiplication with the column vector~α.

Lemma 4.9 Fix n qubits, with N= 2n. Let~α = [α1 · · · αN/2−1]
t

be a vector of angles,0≤ α j < 2π, 1≤ j ≤ N/2−1. Then for
S1, S2, . . . SN/2−1 the Grey ordering of the nonempty subsets of
the set of top lines{1, · · · ,n−1},

η( ⊕S1[Rz(α1)] · · ·⊕SN/2−1
[Rz(αN/2−1)] ) = −2 η⊕~α (19)

The proof is quite similar to LemmaA.6. It uses Proposition
4.5and properties ofη(−) following from each component being
a character.

We now state the synthesis algorithm. It is critical in the fol-
lowing thatη⊕ be invertible. This result will be proven in the
next subsection.

XOR-Controlled Rotation Synthesis Algorithm Let U =

∑N−1
j=0 u j | j〉〈 j|, for which we wish to synthesize a circuit dia-

gram using
⊕

k[Rz(α)] blocks. LabelS1, S2, S3 . . .SN/2−1 the
nonempty subsets of the top lines{1, · · · ,n−1} in theGrey or-
der.

1. Compute~ψ = η(U).

2. Compute the inverse matrix(η⊕)−1.

3. Compute~α = (−1/2)(η⊕)−1~ψ, treating~ψ as a column vec-
tor. Label~α = [α1 · · ·αN/2−1]

t .

4. Compute the diagonal quantum computation
Ũ =

⊕

S1
[Rz(−α1)] · · ·

⊕

SN/2−1
[Rz(−αN/2−1)] U As

is verified below,Ũ is a tensor.

5. Use the argument of Proposition3.1to computeŨ =V⊗W
for V ∈ A(n−1) andW = eiΦRz(α0) for some angleα0.

6. Given prior computations, the following expression holds:

U =
⊕

/0[Rz(α0)]
⊕

S1
[Rz(α1)] · · ·

⊕

SN/2−1
[Rz(αN/2−1)] [V ⊗1] (20)

Here, 1 denotes the trivial computation ofU(21). Also,
⊕

/0[Rz(α0)] means1⊗Rz(α0) for 1∈U(2N/2).

7. Decompose each
⊕

kRz(α) into elementary gates using the
circuit diagrams at the right of Figure3.

8. Using the Grey order andCn
j C

n
k = Cn

kCn
j , cancel all but one

controlled-not between consecutiveRz(α) gates in the re-
sutling diagram.

9. The algorithm terminates by recursively producing a circuit
diagram forV ∈ A(n−1).

Example 4.10 Consider the following 3-qubit computation:

U = e4πi/12|0〉〈0|+e2πi/12|1〉〈1|+
e9πi/12|2〉〈2|+e7πi/12|3〉〈3|+
e3πi/12|4〉〈4|+e8πi/12|5〉〈5|+
e11πi/12|6〉〈6|+e10πi/12)|7〉〈7|

(21)
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We apply the synthesis algorithm above toU .
We begin by computing the 3-qubit case ofη⊕. The Grey

order is{1}, {1,2}, and{2}.

η⊕ =





1 1 0
−1 0 1

1 −1 0



 (22)

The inverse matrix appears in the algorithm and may be reused
for multiple diagonal computations.

(η⊕)−1 = (1/2)





1 0 1
1 0 −1
1 2 1



 (23)

Now ~ψ = η(U) = −i[logχ1(U) logχ2(U) logχ3(U)]t =
[0 7π/12 − 6π/12]t. Thus computing the parameters for the
⊕

S[Rz(α)] blocks,

~α = (−1/2)(η⊕)−1~ψ = [3π/24 −3π/24 −4π/24]t (24)

It should be the case that the computationŨ given by

⊕

{1}
[Rz(−3π/24)]

⊕

{1,2}
[Rz(3π/24)]

⊕

{2}
[Rz(4π/24)]U

(25)
hasŨ = V ⊗W for V a two-qubit diagonal andW a one-qubit
diagonal. We verify this by computing matrix coefficients for Ũ .

In the following computation, for givenR ∈ A we abbre-
viate R = ∑N−1

j=0 r j | j〉〈 j| as R = diag(r0, r1, · · · , rN−1) in order
to save space. The first step in computingŨ is to compute
⊕

{1}[Rz(4π/24)]. Begin by noting that

1⊗1⊗Rz(4π/24) = diag(e−4πi/48,e4πi/48,e−4πi/48,e4πi/48,

e−4πi/48,e4πi/48,e−4πi/48,e4πi/48)
(26)

Associating the entries with|000〉, |001〉, etc., we reverse those
pairs|b1b2b3〉 with the binary integerb1b2 ∈ F ({1}).

⊕

{1}[Rz(4π/24)] = diag(e−4πi/48,e4πi/48,e−4πi/48,e4πi/48,

e4πi/48,e−4πi/48,e4πi/48,e−4πi/48)
(27)

We may similarly construct
⊕

{1,2}[Rz(3π/24)].

⊕

{1,2}[Rz(3π/24)] = diag(e−3πi/48,e3πi/48,e3πi/48,e−3πi/48,

e3πi/48,e−3πi/48,e−3πi/48,e3πi/48)
(28)

Finally, the flip states of{2} are j = 1,3. Thus

⊕

{2}[R(−3π/24)] = diag(e3πi/48,e−3πi/48,e−3πi/48,e3πi/48,

e3πi/48,e−3πi/48,e−3πi/48,e3πi/48)
(29)

Collecting all terms, we arrive at

Ũ = diag(e−4πi/48,e4πi/48,e−4πi/48,e4πi/48,

e4πi/48,e−4πi/48,e4πi/48,e−4πi/48)◦

diag(e−3πi/48,e3πi/48,e3πi/48,e−3πi/48,

e3πi/48,e−3πi/48,e−3πi/48,e3πi/48)◦

diag(e3πi/48,e−3πi/48,e−3πi/48,e3πi/48,

e3πi/48,e−3πi/48,e−3πi/48,e3πi/48)◦

diag(e4πi/12,e8πi/48,e36πi/48,e28πi/48,

e12πi/48,e32πi/48,e44πi/48,e40πi/48)

= diag(e12πi/48,e12iπ/48,e32πi/48,e32iπ/48,

e22πi/48,e22iπ/48,e42πi/48,e42iπ/48)

(30)

Thus Ũ = diag(e12πi/48,e32πi/48,e22πi/48,e42πi/48) ⊗ diag(1,1).
The odd happenstance that the latter tensor factor is an identity
saves one gate.

Next, write out circuit diagrams for each
⊕

S[Rz(α)] per the
right hand side of Figure3. Since the chose the Grey order
{1},{1,2}, {2}, cancelling controlled not gates produces the
leftmost 8 elementary gates of figure1. Finally, call the algo-
rithm recursively onV. The two-qubit case coincides with other
work [2, §2.2]. 3

Proof of Correctness

We briefly verify thatŨ = V ⊗W. First use Proposition4.5for

η(
⊕

S1
[Rz(−α1)] · · ·

⊕

SN/2−1
[Rz(−αN/2−1)] ) = 2η⊕~α (31)

Now by definition~α = (−1/2)(η⊕)−1~ψ, so that 2η⊕α = −~ψ.

η(
⊕

S1
[Rz(−α1)] · · ·

⊕

SN/2−1
[Rz(−αN/2−1)] ) = −~ψ (32)

Then the propertyη(U1U2) = η(U1)+ η(U2) demands

η(
⊕

S1
[Rz(−α1)] · · ·

⊕

SN/2−1
[Rz(−αN/2−1)]U )=−~ψ+~ψ =~0

(33)
So by the restatement of Proposition3.1, we haveŨ = V ⊗W.

There is one remaining unjustified (subtle) statement to check.

Proposition 4.11 η⊕ is an invertible(N/2−1)×(N/2−1) real
matrix for n≥ 1.

Sketch: It is equivalent to consider the question for an alter-
nate basis ofRN/2−1. Thus, choose instead the vectors{v j ; 1≤

j ≤ RN/2−1} of Definition4.2. In this alternate basis, the similar
matrix M corresponding toη⊕ has an entry of 1 for thev j com-

ponent wheneverj is a flip state for thejth-set in Grey order.
Fix an nonempty subsetS of {1,2, · · · ,n− 1}, thus fixing a

column of η⊕. We first claim there precisely 2n−2 flip states
for S. To see this, observe that the equation⊕k∈Sbk = 1 satis-
fied by S-flip states defines an affine linearF2 subspace of the
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finite-dimensional vector space(F2)
2n−1

. Then this number of
elements corresponds to the dimension count, since anyℓ dimen-
sional vector space withF2-scalars must contain 2ℓ elements.

Next, fix S1 6= S2 distinct nonempty subsets. Then the associ-
ated columns ofM share precisely 2n−3 positions in which each
has a nonzero, unit entry. This is again a dimension count. Note
that sinceS-flip states satisfy⊕k∈Sbk = 1, S1 6= S2. Thus the
codimension one subspaces corresponding toS1 andS2 intersect
transversally in a codimension two subspace.

Given these claims, labelM = (mjk) and recallδk
j the Kro-

necker delta which is 1 forj = k and zero else. Now consider-
ations of the last two paragraphs demand that for the transpose
(real adjoint)Mt , MtM = (mk j)(mjℓ) = 2n−2(δℓ

j +1). An omit-

ted argument then shows 06= det(MtM), demanding(detM)2 6=
0. As M is invertible andη⊕ is similar toM, we must haveη⊕

invertible. 2

Gate Counts

Our circuit diagrams are built from blocks realizing
⊕

S[Rz(α)]
at the right of Figure3, and the choice of subsets in the Grey
order causes a large cancellation of controlled-not gates which is
required for theO(2n) asymptotic. We now justify the gate count
of 2n+1−3, which forn = 2 coincides with 5 gates [2, §2.2].

Except for the recursive call toV, the synthesis algorithm
writes elementary gates realizing the following computition.

⊕

/0
[Rz(α0)]

⊕

S1
[Rz(α1)] · · ·

⊕

SN/2−1
[Rz(αN/2−1)] (34)

Here,
⊕

/0[Rz(α0)] = (e−iΦ)(1⊗W) is the one-qubit gate result-
ing on the last tensor factor due to zeroing the obstructionη(−).
We have used the commutativity ofA(n) to move this computa-
tion to the front to preserve the full Grey order including/0.

Now realize each of the
⊕

S[Rz(α)] blocks using the circuits
at the right of Figure3. Due to the Grey order, all but one
controlled-not gate will cancel between any two consecutive Rz

gates on the bottom line. Thus the gate count in terms of elemen-
tary gates from the Introduction should account for the following.

• 2n−1 controlled rotationsRz, since this is the number of pos-
sibly empty subsets of{1,2, · · · ,n−1}.

• 2n−1 controlled-not gates, since one lies to the right of each
Rz gate.

Thus prior to the recursive call, inn≥ 2 qubits the algorithm will
place 2n elementary gates.

To obtain the exact count, stop the recursive count atn = 2
qubits.

2n +2n−1+ · · ·+8+4= 2n+1−4 (35)

The end case of recursion is forn= 1. Since any one-qubit diag-
onal may be written eiΦRz(α), the remaining one-qubit diagonal
requires one elementary gate. Thus the grand total is 2n+1− 3
elementary gates.

5 Stable Lower Bounds

The section justifies the claim of stably-asymptotical optimality
in Theorem1.3using an argument similar to one by E. Knill [10,
Theorem 3.4]. We provide a greater level of detail and tailorthe
discussion to synthesis within a subgroupH ⊂ U(N). Our ar-
gument is what simpler because we are dealing withelementary
gates from the Introduction while Knill usesbasicgates [1].

Thus letS⊂U(N). We introduce the following convention:

S̃= {eiΦV ; 0≤ Φ < 2π,V ∈ S} (36)

This will allow us to ignore global phases in the following dis-
cussion. Note that̃A = A.

We now expand on comments made briefly in Definition1.2
of the Introduction. Acircuit topology1 τ is ann-line diagram on
which is marked a sequence of gate-holders. These gate-holders
are either controlled-not gates joining any two lines or boxes la-
belled eitherY or Z. To specialize the circuit topologyτ to an
actual circuit, one chooses paramaters for either anRy(θ) gate or
an Rz(α) gate to place into boxes labelledY or Z respectively.
We define #τ to be the total of the number of controlled-nots and
boxes, while dimτ denotes the number of boxes. LabelSτ to be
the subset of allV ∈ U(N) that result from choosing particular
parameters for aRy(θ) gate in eachY box and anRz(α) gate in
eachZ box. We say thatτ specializes stably to an analytic sub-
groupH ⊂U(N) whenS̃τ ⊂ H.

Lemma 5.1 Supposeτ specializes stably to H and dimτ + 1 <
dim H. ThenS̃τ is a measure zero subset of H.

Proof: We appeal to Sard’s theorem from differential topol-
ogy [5, p.39]. Consider the mapf : Rdim τ+1 → U(N) which
carries a tuple(Φ,t1,t2, · · · ,tdim τ+1) to the eiΦV which is the
phase eiΦ multiplied by the specialization ofτ corresponding to
t1,t2, · · · ,tdim τ. This map is smooth.

By Sard’s theorem [5, p.39], for all but a measure zero subset
of h∈ H one of the following two cases hold:

• There is no choice of parameterv with f (v) = h.

• For eachv with f (v) = h, the derivative linear map at the

parameterv denotedd fv : Rdimτ+1 → Th(H) is onto.

The second possibility is absurd by the dimension hypothesis.
Thus f (Rdim τ+1) is a measure zero subset ofH. 2

Proposition 5.2 Fix n, and letς be a quantum circuit synthesis
algorithm inputting a∈A(n) and outputting stably to A(n). Then
#ς ≥ 2n−1 = N−1.

1We discuss here circuit topologies in the elementary gate library.
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Proof: Let C be a countable set with{τ(c) ; c ∈ C} the set of
topologies output byς. Now dimA(n) = N. Thus assume by way
of contradiction #ς < N−1. Then we may write

A(n) = ∪c∈CS̃τ(c) (37)

This is impossible by Lemma5.1. Indeed, a countable union of
measure zero subsets is still measure 0 and hence can not cover
A(n). 2

Corollary 5.3 Let {ς(n)} be a family of synthesis algorithms,
each of which accepts all inputs from A(n) and outputs stably to
A(n) per Definition1.2. If #ς(n) ∈ O(2n), then{ς(n)} is stably
asymptotically optimal.

6 Conclusions and On-Going Work

We realize quantum circuits for any diagonalU = ∑N−1
j=0 u j | j〉〈 j|

consisting of at most 2n+1 − 3 alternating controlled-not gates
andz axis Bloch sphere rotations on individual qubits. The con-
struction uses a new circuit block, theXOR-controlled rotation.
ThisO(2n) construction is optimal in the following sense. In the
worst-case and also the generic case, at least 2n−1 one-qubit ro-
tations are required to construct such a diagonalU . Thus our con-
structive algorithm shows that the synthesis of quantum circuits
for diagonal computations is in factΘ(2n). Note that special-case
computations such as tensors of one-qubit diagonal computations
may require fewer gates.

The circuits above have several common applications. For
example, they are useful when constructing a circuit for a top-
conditionedV computation given a circuit diagram forV correct
up to relative phase. They are also needed when applying projec-
tive measurements other than the typical{〈 j| ; 0 ≤ j ≤ N−1}.
In our ongoing work, we will explore applications relating to the
synthesis of real quantum computations and also exotic quantum
circuit synthesis algorithms relying onKAK metadecompositions
of U(2n).

A Synthesis via Controlled Rotations

This appendix describes a synthesis algorithm using the
Λk[Rz(α)] circuit subblocks. Recall our constructive proof of
the upper bound on gate counts of Theorem1.3used

⊕

k[Rz(α)]
subblocks instead. Several technical issues arising in ourmain
algorithm also arise here. Thus, this appendix may serve as an
introduction of how to use the obstructionη(−) of Definition3.2
to form a recursive synthesis algorithm reducingn-qubit diago-
nals to(n−1)-qubit diagonals.

Computation of η( ΛS[Rz(α)] )

Recall from the IntroductionU = ∑N−1
j=0 u j | j〉〈 j| for N = 2n a

fixed n-qubit diagonal quantum computation. Further recall that

Rz

|0〉

s

s

s

=
s

s

s

h|0〉 s

Rz

s

s

s

h

s

s

s

h|0〉

=

s

s

h

s

s

hs

s

h

s

s

h

|0〉

Figure 4: This diagram [1, Lemma 7.11] illustrates how to real-
ize aΛk[Rz(α)] via a singly controlled rotation andk-controlled-
nots. The latter may be synthesized usingO(k) elementary gates,
given the ancilla qubit shown as the top line. Without the ancilla,
a O(k2) gates would be required per corollary 7.6 ibid. The dia-
gram at right recalls the next step of the decomposition.

for S⊂ {1,2, · · · ,n−1}, by ΛS(V) for V ∈U(21) we mean that
instance of the #S-conditionedcomputationΛ#S(V) which is con-
ditioned on lines{ j ∈ S} and acts on linen.

Every computationΛS[Rz(α)] is also diagonal. We seek an
explicit formula forη( ΛS[Rz(α)] ). With sufficient understand-
ing of how ΛS[Rz(α)] affectsη(−), we will be able to choose
exact anglesα so that preprending the conditioned blocks toU
forces the composite to haveη =~0. Thus the composite will be
a tensor by corollary3.3, allowing for recursion. The following
language is useful for expressing and computingη( ΛS[Rz(α)] ).
It is slightly more convenient to use the mathematical notation
for vectors rather thanbra-ket.

Definition 1.1 For 1≤ j ≤ N/2−1, letej denote the standard
basis column vectors forRN/2−1, i.e., ej has a single entry of

1 in the jth row and all other entries 0. We further define the
vectorsv j = ej −ej+1 if 1 ≤ j ≤ N/2−2, also settingv0 = −e1

andvN/2−1 = eN/2−1.

Observe that the vectors{v j ;1 ≤ j ≤ N/2− 1} form a ba-

sis for R2n−1−1. We need one further convention to describe
η( ΛS[Rz(α)] ).

Definition 1.2 Let 1≤ j ≤ N/2−1, with binary representation
j = b1b2 · · ·bn−1 for b1,b2, · · · ,bn−1 ∈ F2. Let S⊂ {1,2, · · · ,n−
1}, S 6= /0. We say thatj is S-conditioned iff∏ j∈Sb j = 1. We
labelC (S) = { j ; j is Sconditioned}.

Proposition A.3 LetC (S) denote the S-conditioned set for some
nonempty S⊂ {1, · · · ,n−1}. Then

η( ΛS[Rz(α)] ) = α ∑
j∈C (S)

v j (38)

Proof: LabelV = ΛS[Rz(α)] = ∑N−1
j=0 λ j | j〉〈 j|. We recall that

η(V) is defined in terms ofχ j(V) = λ2 j−2λ−1
2 j−1λ−1

2 j λ2 j+1. Now

if j ∈ C (S), thenλ2 j = e−iα/2 andλ2 j+1 = eiα/2. If the binary
expression forj is notS-conditioned, thenλ2 j = λ2 j+1 = 1. Con-
tinuing in this manner, say the binary expression forj +1∈ C (S).
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Thenλ2 j+2 = e−iα/2 andλ2 j+3 = eiα/2, elseλ2 j+2 = λ2 j+3 = 1.
Thus lettingδC (S) denote the indicator function ofC (S),

−i logχ j(V) = αδC (S)( j)−αδC (S)( j +1) (39)

This expression agrees componentwise with the result of the
proposition, given Definition3.2. 2

Example 1.4 Considern = 4 qubits for the subsetS= {1,3}
and 0≤ α < 2π arbitrary. Labelφ = −α/2, so thatRz(α) =
eiφ|0〉〈0|+ e−iφ|1〉〈1|. SinceV = ΛS[Rz(α)] is diagonal, we de-
scribe the quantum computation by specifying multiples on each
computational basis state.

state mult state mult state mult state mult

|0000〉 1 |0100〉 1 |1000〉 1 |1100〉 1
|0001〉 1 |0101〉 1 |1001〉 1 |1101〉 1
|0010〉 1 |0110〉 1 |1010〉 eiφ |1110〉 eiφ

|0011〉 1 |0111〉 1 |1011〉 e−iφ |1111〉 e−iφ

Thus,χ1(V) = 1, χ2(V) = 1, χ3(V) = 1, χ4(V) = 1, χ5(V) =
e−2iφ, χ6(V) = e2iφ, andχ7(V) = e−2iφ. Thus we have directly
computed thatη( ΛS[Rz(α)] ) = −2φi[0 0 0 0 1−1 1]t .

On the other hand,C ({1,3}) = {101b,111b} = {5,7}, where
the subscript denotes binary. Thus

v5 +v7 = (e5−e6)+e7 = [0 0 0 0 1−1 1]t (40)

Thus we computed the right-hand side of PropositionA.3. 3

A.1 Λk[Rz(α)]-block synthesis algorithm

Before the following definition, we note a happy accident. There
are N/2− 1 nonempty subsets of the top lines{1, · · · ,n− 1},
and moreoverN/2−1 charactersχ j : A(n) →U(1) which must
be zeroed within the components of the obstructionη(−) to form
a tensor. Thus, the following matrix is square.

Definition 1.5 The (N/2− 1)× (N/2− 1) real matrixηΛ is
defined as follows. Order nonempty subsetsS1, S2, . . .S2n−1−1 in

dictionary order. Then for 1≤ j ≤ N/2− 1, the jth column of
ηΛ is η( ΛSj [Rz(1 radian)] ).

Lemma A.6 Let ~α = [α1 · · · αN/2−1]
t . Then for S1, S2,

. . . SN/2−1 the dictionary ordering of nonempty subsets of
{1, · · · ,n−1},

η( ΛS1[Rz(α1)] ΛS2[Rz(α2)] · · · ΛSN/2−1
[Rz(αN/2−1)] ) = ηΛ~α

(41)
Here, the right hand side denotes matrix multiplication by the
column vector~α.

Sketch: Recall that for any characterχ : A→ C−{0}, one has
logχ(VW) = logχ(V)+ log~χ(W) and logχ(Va) = alogχ(V) for

V,W ∈ A, a∈ R. Recall Definition3.2and apply these properties
to the entries−i log~χ j of the vector valued functionη(−). 2

We now stateΛk[Rz(α)]-block synthesis algorithm for a diag-
onal unitary computations. The proof of correctness follows in
the next subsection and includes a proof of the subtle fact that the
matrixηΛ is inveritble.
Controlled Rotation Synthesis Algorithm Let U =

∑N−1
j=0 u j | j〉〈 j|, for which we wish to synthesize a circuit diagram

in terms of Λk[Rz(α)] blocks. LabelS1, S2, S3 . . .S2n−1−1
the nonempty subsets of the topn− 1 lines {1, · · · ,n− 1} in
dictionary order.

1. Compute the obstruction~ψ = η(U).

2. Compute the inverse matrix(ηΛ)−1.

3. Compute~α = (ηΛ)−1~ψ, treating~ψ as a column vector. La-
bel~α = [α1 · · ·αN/2−1]

t .

4. Compute the diagonal quantum computation
Ũ = ΛS1[Rz(−α1)] · · · ΛSN/2−1

[Rz(−αN/2−1)] U . As

is verified below,Ũ is a tensor.

5. Use the argument of prop.3.1 to computeŨ = V ⊗W for
V ∈ A(n−1) andW = eiΦRz(α0) for some angleα0.

6. Given prior computations, the following expression holds:

U = Λ /0[Rz(α0)] ΛS1[Rz(α1)] · · · ΛSN/2−1
[Rz(αN/2−1)] [V⊗1]

(42)
Here, 1 denotes the trivial computation ofU(21). Also,
Λ /0[Rz(α0)] means1⊗Rz(α0) for 1∈U(2N/2).

7. Techniques from the literature are then used to decompose
eachΛSj [Rz(α j )] into elementary gates per Figure4.

8. The algorithm terminates by recursively producing a circuit
diagram forV ∈ A(n−1).

Example 1.7
In three qubits, consider the following diagonal computation.

U = e6πi/6|0〉〈0|+e3πi/6|1〉〈1|+e9πi/6|2〉〈2|+e8πi/6|3〉〈3|
+e5πi/6|4〉〈4|+e1πi/6|5〉〈5|+e6πi/6|6〉〈6|+1|7〉〈7|

(43)
Then one hasχ1(U) = e2πi/6, χ2(U) = e−3πi/6, χ3(U) = e−2πi/6

so that~ψ = η(U) = [2π/6 −3π/6 −2π/6]t.
We now must compute~α by computing the inverse matrix

(ηΛ)−1. For this matrix, first compute the following.

ηΛ =





0 0 1
1 0 −1
0 1 1



 (44)

The following inverse matrix results, and it may be reused for
multiple specific diagonalsU .

(ηΛ)−1 =





1 1 0
−1 0 1
1 0 0



 (45)

11



So~α = (η)−1~ψ = [−π/6 − 4π/6 2π/6]t . HenceŨ as defined
below is a tensor.

Ũ = Λ{1}[Rz(π/6)] Λ{1,2}[Rz(4π/6)] Λ{2}[Rz(−π/6)] U (46)

In order to verify this directly, we compute the eight diagonal
matrix coefficients of each ofΛS[Rz(α)]. To save space, we write
diag(λ0, · · · ,λ7) for λ0|0〉〈0|+ · · ·+ λ7|7〉〈7|.

Λ{1}[Rz(π/6)] = diag(1,1,1,1,e−πi/12,

eπi/12,e−πi/12,eπi/12)

Λ{1,2}[Rz(4π/6)] = diag(1,1,1,1,1,1,e−4πi/12,e4πi/12)

Λ{2}[Rz(−2π/6)] = diag(1,1,e2πi/12,e−2πi/12,

1,1,e2πi/12,e−2πi/12)
(47)

Then multiplying, the expression demonstratesŨ = V ⊗W.

Ũ = diag(e12πi/12,e6πi/12,e20πi/12,e14πi/12,

e9πi/12,e3πi/12,e9πi/12,e3πi/12)
(48)

SinceŨ is a tensor, we obtain the following decomposition ofU .

U = Λ{1}[Rz(−π/6)] Λ{1,2}[Rz(−4π/6)] Λ{2}[Rz(π/6)]

[diag(1,e8πi/12,e−3πi/12,e−3πi/12)⊗diag(e12πi/6,e6πi/6)]
(49)

The algorithm then recursively synthesizes the 2-qubit diagonal
V = 1|0〉〈0|+e8πi/12|1〉〈1|+e−3πi/12|2〉〈2|+e−3πi/12)|3〉〈3|. 3

Proof of correctness ofΛk[Rz(α)]-block synthesis

We briefly verify thatŨ = V ⊗W. First use propositionA.6 for

η( ΛS1[Rz(−α1)] · · · ΛSN/2−1
[Rz(−αN/2−1)] ) = −~ψ (50)

Then the propertyη(U1U2) = η(U1)+ η(U2) demands

η( ΛS1[Rz(−α1)] · · ·ΛSN/2−1
[Rz(−αN/2−1)] U ) = −~ψ+~ψ =~0

(51)
So by the restatement of Proposition3.1, we haveŨ = V ⊗W.

The algorithm also uses the following proposition.

Proposition A.8 The matrixηΛ per DefinitionA.5 is an invert-
ible (2n−1−1)× (2n−1−1) matrix.

Sketch: It suffices instead to consider the similar matrix corre-
sponding to a change of basis tov j , 1≤ j ≤N/2−1 of Definition
4.2. Thus, ifB= [v1 v2 · · · vN/2−1] is the change of basis matrix,
the matrix similar toηΛ is M = B−1ηΛB = (mjk). Now mjk = 0
if j is notSk-conditioned andmjk = 1 if j is Sk-conditioned.

M is invertible since column operations reduceM to a permu-
tation matrix. Indeed, the lasteN/2−1 column may be used to
clear all other nonzero entries in the last row. Then each of the
columns corresponding ton− 2 element subsets retain a single
nonzero entry, and the corresponding rows may be cleared.2
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